Détermination Structurale de (+)_DCr(en)₃Cl₃.2H₂O à 123 K. Etude de la Conformation de l'Ion Complexe en Fonction de la Température entre 293 et 123 K

PAR ANNICK WHULER, PIERRE SPINAT ET CATHERINE BROUTY

Laboratoire de Minéralogie–Cristallographie associé au CNRS, Université P. et M. Curie, 4 place Jussieu, 75230 Paris CEDEX 05, France

(Reçu le 4 juillet 1977, accepté le 20 septembre 1977)

The structure of $(+)_{\rm D}$ Cr(en)₃Cl₃. 2H₂O has been determined at 123 K. The lattice constants are a = 14.85 (1), b = 11.03 (1), c = 10.98 (1) Å, $\beta = 108.81$ (5)° and the volume of the unit cell loses 3% of its value on going from 293 to 123 K. The structural distribution of atoms is not modified, but the conformational disorder which existed at 293 K has disappeared. The absolute configuration of the two crystallographically independent [(+)Cr(en)₃]³⁺ cations is $[\Lambda(\lambda\delta\delta)]$. A study of the evolution of this disorder during a decrease in temperature shows that this phenomenon is continuous and reversible.

Introduction

La détermination structurale du composé $(+)_D Cr(en)_3 Cl_3.2H_2O$ a montré qu'un des ligands éthylènediamine présente un désordre conformationnel (*lel-ob*) à température ambiante (Whuler, Brouty, Spinat & Herpin, 1977).

Ce phénomène ayant été mis en évidence et résolu également dans $(\pm)Cr(en)_3(SCN)_3.0,75H_2O$ (Brouty, Spinat, Whuler & Herpin, 1977), l'étude de la structure de $(+)_DCr(en)_3Cl_3.2H_2O$ à 123 K, et de l'évolution du désordre conformationnel entre 293 et 123 K, permet de comparer l'influence de la température sur ces deux complexes.

Détermination structurale à 123 K

Les études à basse température sont effectuées à l'aide d'un diffractomètre quatre cercles Philips PW 1100, équipé d'un système de refroidissement par jet d'azote gazeux.

La température du cristal est portée de 293 à 123 K en six heures, par paliers successifs. L'évolution de la maille cristalline est contrôlée à chaque palier, ce qui permet de vérifier qu'aucune transformation n'apparaît entre ces deux températures.

A 123 K, les données cristallographiques sont les suivantes: a = 14,85 (1), b = 11,03 (1), c = 10,98 (1) Å, $\beta = 108,81$ (5)°, V = 1702 Å³, groupe spatial P2₁. La contraction du volume de la maille est donc de 3% entre 293 et 123 K, celle des paramètres étant comprise entre 0,5 et 1,5%.

L'enregistrement des intensités diffractées est effectué dans les mêmes conditions qu'à 293 K [λ (Mo K_{α}), $2^{\circ} \leq 2\theta \leq 60^{\circ}$, fond continu mesuré en $f(\theta)$]: 5204 réflexions sont mesurées dont 4820 ($F_o \ge 4\sigma$) seront considérées pour l'affinement de la structure. Les intensités sont corrigées des facteurs de Lorentz et de polarisation, mais non de l'absorption.

La structure à 123 K est affinée à partir des positions atomiques établies à l'ambiante, après avoir déterminé le facteur de température global. Les premiers affinements et sections de série-différence montrent que le désordre (*lel-ob*), existant à 293 K sur le ligand N(15)-C(15)-C(16)-N(16) de l'ion complexe Cr(1) (Whuler *et al.*, 1977), a disparu à 123 K, au profit de la conformation *lel.*

Après avoir introduit les positions des atomes d'hydrogène des ligands éthylènediamine calculés par *FINDH* (Raymond, Corfield & Ibers, 1968) et des molécules d'eau déterminées par sections de sériedifférence, la structure définitive est alors obtenue, après affinement des coordonnées atomiques et des coefficients d'agitation thermique anisotrope des atomes autres que les hydrogène (R = 0,077 pour 4820 réflexions).*

Les positions atomiques obtenues à 123 K restent voisines de celles déterminées à 293 K. L'examen du Tableau 1 montre que les facteurs de température moyens sont sensiblement moitié de ceux observés à l'ambiante. Seuls les atomes du ligand N(15)-C(15)-C(16)-N(16), désordonné à 293 K, conservent une agitation thermique importante bien qu'il n'y ait aucun

^{*} Les listes des facteurs de structure, des facteurs d'agitation thermique anisotrope et les amplitudes le long des trois axes principaux des ellipsoïdes de vibration (r.m.s.) pour les atomes autres que les hydrogène ont été déposées au dépôt d'archives de la British Library Lending Division (Supplementary Publication No. SUP 33046: 24 pp.). On peut en obtenir des copies en s'adressant à: The Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CH1 1NZ, Angleterre.

Tableau 1. Positions atomiques ($\times 10^4$; pour H $\times 10^3$) $de(+)_{\rm D}$ Cr(en)₃Cl₃. 2H₂O à 123 K

m est le facteur de multiplicité; $B_{\rm H} = 2$ Å².

					B _{moyen}
	m	x	у	Ζ	(A ²)
Cr(1)	1,00	5956 (1)	7070 (0)	2295 (1)	1,4
N(11)	1,00	5404 (5)	5365 (8)	1764 (7)	1,9
N(12)	1,00	6470 (5)	6275(7)	4096 (7)	1,5
N(13) N(14)	1,00	5461 (5) 7169 (5)	6725 (7)	1815 (7)	1,0
N(15)	1,00	4760 (9)	7793 (13)	2600 (11)	4,6
N(16)	1,00	6542 (9)	8756 (9)	3070 (9)	3,7
C(11)	1,00	5879 (7)	4492 (10)	2800 (9)	2,0
C(12)	1,00	5997 (6)	5105(10)	4090 (8)	2,0
C(13) C(14)	1,00	0143 (0) 7147 (7)	7454 (9)	-270(9) 677(10)	1,7
C(15)	1,00	4881 (0)	9063 (0)	2871 (0)	6,6
C(16)	1,00	5890 (0)	9361 (0)	3693 (0)	6,0
Cr(2)	1,00	724 (1)	6991 (2)	7783 (1)	1,5
N(21) N(22)	1,00	1936 (5)	/5/2(/) 6281(7)	7400(7)	1,4
N(22) N(23)	1,00	1228(7)	7691 (9)	9662 (9)	2,8
N(24)	1,00	1403 (6)	5450 (7)	8669 (8)	2,0
N(25)	1,00	-17 (5)	8603 (7)	7107 (8)	1,7
N(26)	1,00	-562 (6)	6459 (11) 6010 (0)	7983 (11)	3,7
C(21) C(22)	1,00	2028 (0)	6809 (9)	5290 (9)	1,9
C(23)	1,00	1873 (8)	6798 (10)	10519 (9)	2,5
C(24)	1,00	1526 (7)	5536 (10)	10077 (11)	2,6
C(25)	1,00	-916 (7)	8586 (11)	7432 (12)	3,1
C(20)	1,00	-1325 (7) 8801 (2)	7351 (11) 8495 (3)	4002 (3)	3,7
Cl(1)	1,00	3357 (1)	9122 (2)	9926 (2)	1,6
Cl(3)	1,00	8449 (1)	5005 (2)	4322 (2)	1,8
Cl(4)	1,00	3742 (1)	5735 (2)	9092 (2)	1,7
CI(5)	1,00	6507(3) 9266(3)	9733 (4) 5770 (4)	7292 (5)	5,1 4 7
O(1)	1.00	5923 (7)	7216 (8)	6320 (6)	4,6
O(2)	1,00	7149 (6)	5397 (9)	7783 (9)	3,7
O(3)	0,60	9987 (10)	8246 (12)	1297 (14)	5,6
O(4)	1,00	3815 (4)	0993 (3) 8820 (13)	4524 (6)	2,4
$H_1(N_{11})$	1.00	479	537	164	5,0
H2(N11)	1,00	550	515	105	
H1(N12)	1,00	708	616	429	
$H_2(N_{12})$	1,00	635	675	466	
$H_2(N13)$	1,00	544	855	47	
H1(N14)	1,00	767	691	245	
H2(N14)	1,00	719	596	163	
H1(N15)	1,00	427	768	191	
$H_2(N15)$ $H_1(N16)$	1,00	400 709	742 864	324	
H2(N16)	1,00	660	921	245	
H1(C11)	1,00	550	378	271	
H2(C11)	1,00	648	427	274	
HI(C12) H2(C12)	1,00	637 520	401 522	4//	
$H_1(C_{12})$	1,00	600	664	-62	
H2(C13)	1,00	608	799	-95	
H1(C14)	1,00	731	827	93	
H2(C14)	1,00	758	714	28	
$H_2(C15)$	1,00	445 473	930	208	
HI(C16)	1,00	598	1021	372	
H2(C16)	1,00	601	905	454	
H1(N21)	1,00	189	834	723	
H2(N21)	1,00	243	143	806	

	т	x	У	Ζ
H1(N22)	1,00	48	550	600
H2(N22)	1,00	-18	644	552
H1(N23)	1,00	153	836	966
H2(N23)	1,00	74	783	993
H1(N24)	1,00	106	481	834
H2(N24)	1,00	195	539	856
H1(N25)	1,00	32	922	747
H2(N25)	1,00	-14	865	627
H1(N26)	1,00	-70	572	768
H2(N26)	1,00	-52	647	879
H1(C21)	1,00	243	734	591
H2(C21)	1,00	228	612	652
H1(C22)	1,00	104	630	459
H2(C22)	1,00	80	759	496
H1(C23)	1,00	249	690	1048
H2(C23)	1,00	187	691	1137
H1(C24)	1,00	93	539	1021
H2(C24)	1,00	197	495	1054
H1(C25)	1,00	-78	880	831
H2(C25)	1,00	-135	914	690
H1(C26)	1,00	-150	715	632
H2(C26)	1,00	-186	730	748
H1(O1)	1,00	622	676	647
H2(O1)	1,00	622	773	642
H1(O2)	1,00	733	499	751
H2(O2)	1,00	695	529	854
HI(O3)	0,60	1050	781	188
H2(O3)	0,60	953	783	77
H1(O4)	1,00	396	750	492
H2(04)	1,00	327	703	406
H1(05)	0,40	138	924	300
H2(O5)	0,40	156	859	360

doute sur la conformation purement lel de ce ligand (géométrie correcte, aucune anomalie en sections de série-différence).

La différence existant entre les sites occupés par les atoms de chlore (Whuler et al., 1977) se répercute, comme à 293 K, sur leur agitation thermique: les chlore Cl(5) et Cl(6) situés dans le plan d'oxygène conservent toujours une agitation thermique plus grande que celle des chlore contenus dans les feuillets d'octaèdres.

Entre 293 et 123 K, les distances et angles de liaison caractérisant les ions complexes subissent peu de variations (Tableau 2). Les distorsions existant dans les deux ions complexes Cr(1) et Cr(2) restent similaires pour les deux températures étudiées: en effet, si les rotations entre les triangles de base définissant les octaèdres sont légèrement plus faibles à 123 K [7,6° pour Cr(1) et 6,6° pour Cr(2) au lieu de 8,1° et 7,4°], par contre, les angles entre les plans définis par ces mêmes triangles se sont accentués [2,63° pour Cr(1) et 1,95° pour Cr(2) au lieu de 0,65° et 1,43°].

Le Tableau 3 donne, pour chaque ion complexe, les écarts à la planéité des cycles chélatés et met en évidence la conformation de chaque ligand éthylènediamine. Les deux cations $[(+)_{D}Cr(en)_{3}]^{3+}$ indépendants possèdent donc la même configuration $\Lambda(\delta\lambda\lambda)$ (IUPAC, 1970).

Tableau 1 (suite)

Tableau 2.	Distances (A	.) et angle	es (°) de	liaison dans
	les cations co	omplexes of	à 123 K	

.

N-H	0,87	H-N-H	109,5
C-H	0,95	n-c-n	109,5
		Cation Cr(1)	Cation Cr(2)
Cr N(1)		2,059 (6)	2,076 (6)
Cr-N(2)		2,071 (6)	2,063 (6)
Cr - N(3)		2,083 (6)	2,102 (6)
Cr - N(4)		2,070 (6)	2,054 (6)
Cr - N(5)		2,069 (8)	2,097 (7)
Cr-N(6)		2,113 (8)	2,076 (8)
Moyenne		2,077	2,078
N(1)–C(1)		1,483 (9)	1,481 (9)
N(2) - C(2)		1,470 (9)	1,471 (9)
N(3) - C(3)		1,486 (9)	1,481 (9)
N(4) - C(4)		1,484 (9)	1,500 (9)
N(5) - C(5)		1,431 (9)	1,489 (9)
N(6) - C(6)		1,509 (9)	1,534 (9)
Moyenne		1,477	1,493
C(1)–C(2)		1,528 (9)	1,530 (9)
C(3) - C(4)		1,519 (9)	1,508 (12)
C(5) - C(6)		1,515 (9)	1,480 (12)
Moyenne		1,521	1,506
N(1)-Cr-N(2)	2)	82,8 (4)	82,1 (4)
N(3) - Cr - N(4)	4)	82,2 (4)	82,8 (4)
N(5)-Cr-N(6)	5)	81,9 (4)	83,2 (4)
Moyenne		82,3	82,7
Cr-N(1)-C(1)	109,2 (8)	109,7 (8)
Cr-N(2)-C(2)	!)	109,8 (8)	110,4 (8)
Cr-N(3)-C(3)	5)	110,6 (9)	109,4 (9)
Cr-N(4)-C(4)	•)	109,2 (8)	108,3 (8)
Cr-N(5)-C(5)	5)	110,8 (9)	108,3 (8)
Cr-N(6)-C(6))	109,3 (8)	107,5 (9)
N(1) - C(1) - C	(2)	108,0 (9)	107,2 (9)
N(2) - C(2) - C	(1)	107,7 (9)	107,5 (9)
N(3)-C(3)-C	(4)	107,6 (9)	109,0 (9)
N(4) - C(4) - C	(3)	108,5 (9)	107,8 (9)
N(5) - C(5) - C	(6)	111,7 (9)	108,9 (9)
N(6)-C(6)-C	(5)	106,9 (9)	108,0 (9)
Moyenne		109,1	108,5

Les longueurs et angles de liaison des molécules d'eau sont répertoriés dans le Tableau 4.

La cohésion entre ions complexes, atomes de chlore et molécules d'eau est assurée par les mêmes types de liaison hydrogène qu'à 293 K. Le réseau de liaisons $N-H\cdots Cl$ et $N-H\cdots O$ reste identique à celui observé à 293 K si on considère le ligand désordonné uniquement en conformation lel (Tableau 5). Les liaisons hydrogène sont globalement renforcées à basse température, tout particulièrement les liaisons N(15)- $H1(N15)\cdots Cl(2),$ $N(16) - H1(N16) \cdots Cl(1)$ et N(16)-H2(N16)···Cl(4)ⁱ qui favorisent la conformation lel du ligand N(15)-C(15)-C(16)-N(16) de l'ion complexe Cr(1). Ceci peut expliquer la disparition à 123 K du désordre (lel-ob) existant à 293 K. Le réseau de liaisons O-H····Cl et O-H····O est plus dense à 123 qu'à 293 K (Tableau 5). Certaines liaisons. renforcées par l'abaissement de température, apparaissent, en effet, à 123 K. Les deux molécules d'eau situées sur O(3) et O(5) semblent subir une rotation, entraînant la disparition des liaisons $O(3)-H1(O3)\cdots C1(6)$ et $O(5)-H1(O5)\cdots Cl(3)$ au profit des liaisons O(3)- $H1(O3)\cdots O(5)$ et $O(3)-H2(O3)\cdots Cl(6)$ d'une part, et $O(5)-H1(O5)\cdots O(3)$ et $O(5)-H2(O5)\cdots Cl(3)$ d'autre part.

Tableau 4. Distances (Å) et angles (°) de liaison dansles molécules d'eau à 123 K

O(1)-H1(O1)	0,66	H1(O1)–O(1)–H2(O1)	103
O(1)-H2(O1)	0,72		
O(2)–H1(O2)	0,65	H1(O2) - O(2) - H2(O2)	127
O(2)-H2(O2)	0,99		
O(3)-H1(O3)	0,96	H1(O3)-O(3)-H2(O3)	118
O(3)-H2(O3)	0,87		
O(4)-H1(O4)	0,70	H1(O4)-O(4)-H2(O4)	113
O(4)-H2(O4)	0,81		
O(5)-H1(O5)	0,74	H1(O5)-O(5)-H2(O5)	90
O(5)-H2(O5)	0,68		

Tableau 3. Conformations des ligands éthylènediamine à 123 K

		Cation Cr(1)			Cation Cr(2)			
	Distance au plan moyen du ligand	Distance au plan [N(1),N(3),N(5)]	Longueur de liaison C–C	Conformation du ligand	Distance au plan [N(1),N(3),N(5)]	Longueur de liaison C–C	Distance au plan moyen du ligand	
C(1)	−0,371 Å	0,780 Å			0.740 Å		-0.365 Å	
C(2)	+0.324	1,505			1.462		+0.341	
Δ [C(1)–C(2)]	- ,-	0,725	1.528 Å	ob	0.722	1.530 Å	,	
C(3)	+0,265	0,431	,		0.473	1,00011	+0.182	
C(4)	-0,416	1,936			1.967		-0.499	
Δ [C(3)–C(4)]	,	1.505	1.519	lel	1.494	1.508	0,177	
C(5)	+0.294	0.458	-,,		0.444	1,200	+0.323	
C(6)	-0.347	1.970			1.921		-0.383	
⊿[C(5)–C(6)]		1,512	1,515	lel	1,477	1,480	5,505	

2H,O à 123 K

Tableau 5. Liaisons hydrogène dans $(+)_{D}Cr(en)_{3}Cl_{3}$ - Tableau 6. Expansion thermique de $(+)_{D}Cr(en)_{3}Cl_{3}$ - $2H_2O(123 \le T \le 293 \text{ K})$

Opération de symétrie: (i) $1 - x, \frac{1}{2} + y, 1 - z$.

$A-H\cdots B$	A-B	H · · · <i>B</i>	$\angle A - H \cdots B$
$N(11) - H1(N11) - Cl(5)^{i}$	3,393 (6) Å	2,66 Å	143°
$N(11)-H2(N11)-Cl(2)^{i}$	3,302 (6)	2,55	146
N(12)-H1(N12)-Cl(3)	3,191 (6)	2,39	153
N(12)-H2(N12)-O(1)	2,996 (9)	2,18	156
N(13)-H1(N13)-Cl(4)	3,377 (6)	2,58	154
$N(13)-H2(N13)-Cl(4)^{i}$	3,455 (6)	2,66	152
N(14)-H1(N14)-Cl(1)	3,420 (7)	2,63	152
$N(14) - H2(N14) - Cl(2)^{i}$	3,398 (6)	2,61	151
N(15)-H1(N15)-Cl(2)	3,341 (7)	2,68	133
N(15)-H2(N15)-O(4)	3,021 (9)	2,22	153
N(16)-H1(N16)-Cl(1)	3,189 (8)	2,44	145
N(16)-H2(N16)-Cl(4) ⁱ	3,151 (7)	2,32	159
N(21)-H1(N21)-Cl(3)	3,226 (6)	2,45	150
N(21)-H2(N21)-Cl(4)	3,397 (6)	2,67	142
$N(22)-H1(N22)-C1(1)^{i}$	3,286 (6)	2,45	161
N(22)-H2(N22)-Cl(3)	3,207 (6)	2,58	130
N(23)-H1(N23)-Cl(2)	3,461 (8)	2,76	139
N(23)-H2(N23)-O(3)	3,021 (9)	2,19	159
$N(24)-H1(N24)-O(3)^{i}$	3,197 (9)	2,45	145
N(24) - H2(N24) - Cl(4)	3,368 (7)	2,55	156
N(25)-H1(N25)-Cl(6) ⁱ	3,273 (7)	2,50	148
N(25)-H2(N25)-Cl(1)	3,295 (6)	2,49	155
N(26)-H2(N26)-Cl(6)	3,243 (7)	2,42	157
O(1)-H1(O1)-O(2)	2,834 (9)	2,23	156
O(1)-H2(O1)-Cl(5)	3,001 (8)	2,38	147
O(2)-H1(O2)-O(5) ⁱ	2,788 (9)	2,15	170
$O(2) - H2(O2) - Cl(2)^{i}$	3,176 (8)	2,28	152
O(3)-H1(O3)-O(5)	2,902 (9)	2,28	121
O(3)-H2(O3)-Cl(6)	2,922 (9)	2,31	128
O(5)-H1(O5)-O(3)	2,902 (9)	2,56	111
$O(5) - H2(O5) - Cl(3)^{i}$	3,120 (8)	2,76	117

Fig. 1. Variation du coefficient α dans le plan (010) $(123 \le T \le 293 \text{ K}).$

Etude de l'expansion thermique

Lors de l'abaissement de la température, le renforcement de la cohésion intermoléculaire et donc des liaisons hydrogène est relié directement à l'expansion thermique.

Celle-ci est représentée par une quadrique dont l'un des axes principaux (X_2) est parallèle à l'axe binaire dans le système monoclinique.

La dilatation thermique est évaluée à partir des variations en fonction de la température des distances interréticulaires d_{hkl} : $\alpha = (\Delta d_{hkl}/d_{hkl}) \times (1/\Delta T)$.

L'anisotropie de l'expansion thermique dans le plan (h0l) (Tableau 6) est représentée sur la Fig. 1. Les coefficients de dilatation suivant les axes principaux de la quadrique sont les suivants:

$$\alpha_1 = (99 \pm 10) \times 10^{-6} \text{ K}^{-1}$$

$$\alpha_2 = (56 \pm 8)$$

$$\alpha_3 = (26 \pm 15)$$

$$\Phi = (\mathbf{OX}_3, \mathbf{a}) = 73^{\circ}.$$

Il apparaît que l'expansion thermique est maximale suivant une direction (X_1) faisant un angle de 30° avec l'axe [101]* perpendiculaire aux plans définis par les feuillets d'octaèdres et les molécules d'eau (Fig. 2). Les répercutions dues à l'abaissement de température 293 → 123 K doivent donc être plus importantes sur les liaisons hydrogène sensiblement perpendiculaires aux feuillets que sur les liaisons hydrogène parallèles à ces mêmes feuillets. L'examen des longueurs de liaisons hydrogène, à 293 K (Whuler et al., 1977) et à 123 K (Tableau 5), et de leurs orientations, permet de vérifier ces hypothèses:

- 90% des liaisons qui ne subissent pas ou peu de modifications sont sensiblement parallèles aux feuillets:

 93% des liaisons sensiblement perpendiculaires aux feuillets subissent un renforcement lors de l'abaissement de la température.

Fig. 2. Projection de la structure et expansion thermique dans le plan (010). -- Liaison hydrogène. $- \rightarrow$ Liaison hydrogène avec atome translaté $\pm \mathbf{b} \cdot \odot$ Oxygène. \otimes Chlore.

Evolution du désordre conformationnel en fonction de la température

Réversibilité du phénomène

0

Une nouvelle étude structurale (R = 0,085 pour 4444 plans) a été effectuée, à température ambiante, sur le cristal après l'avoir soumis à un réchauffement par paliers successifs. La structure obtenue est identique à celle déterminée précédemment à 293 K (Whuler *et al.*, 1977), c'est-à-dire, que le ligand N(15)-C(15)-C(16)-N(16) présente à nouveau le désordre conformationnel (60% *lel*-40% *ob*). Contrairement au composé (\pm)Cr(en)₃(SCN)₃.0,75H₂O (Brouty *et al.*, 1977), l'agitation thermique du ligand désordonné est du même ordre de grandeur que celle déterminée avant le traitement thermique (293-123-293 K).

Le phénomène ordre-désordre étant réversible, une étude de son évolution en fonction de la température a été entreprise entre 123 et 293 K.

Méthode de calcul

Lors d'un article précédent (Brouty *et al.*, 1977) une méthode a été établie, permettant de suivre l'évolution du désordre conformationnel, en fonction de la température, sans qu'il soit nécessaire d'effectuer à chaque fois une détermination structurale. Les calculs ont été décrits dans le cas d'un composé centré; mais le complexe actif $(+)_D Cr(en)_3 Cl_3.2H_2O$ étant non-centré (groupe $P2_1$, $b \parallel A_2$), l'évolution de la conformation est étudiée uniquement à partir de réflexions h0l dont les phases sont 0 ou π .

Cette méthode nécessite de sélectionner, non seulement des réflexions très sensibles au désordre de conformation (soient h0l), mais aussi des réflexions insensibles à ce même désordre (soient h'0l'). Ces dernières, choisies telles que leurs facteurs de structure calculés $F(lel)_{h'0l'}$ et $F(ob)_{h'0l'}$ soient nuls ou presque nuls $||F(lel)_{h'0l'} - F(ob)_{h'0l'}||F_o|_{h'0l'} \leq 0,04$], permettent de suivre l'évolution de l'agitation thermique en fonction de la température et de l'angle de Bragg $K_T = f(\theta)$.

Les réflexions h0l très sensibles au désordre conformationnel sont sélectionnées telles que: $[|F(lel)_{h0l} - F(ob)_{h0l}|/|F_o|_{h0l}]$ soit le plus grand possible. Leur facteur de structure peut être décomposé de la façon suivante: $|F_o|_{h0l,T}K_{T,h0l} = |F(\text{struct.} - \text{conf.}) + xF(lel) + (1-x)F(ob)|_{h0l,123K}$ ce qui permet de déterminer le pourcentage x de conformation *lel* présent à une température T.

Mesures expérimentales et résultats

Les intensités des réflexions h0l et h'0l' ont été mesurées sur diffractomètre, à huit températures

Tableau 7. Facteurs de structure des réflexions peu sensibles au changement de conformation

			293 K		243 K	226 K	202 K	182 K	163 K	140 K		123 K	
h' 0 l'	θ(°)	$ F_o $	F _(lel)	F _(ob)			L	Fol			$ F_o $	F _(lel)	$F_{(ob)}$
002	3,91	103,2	-20,5	-23,6			93,2	92,0	90,8	85,6	89,6	-22,5	-23,1
i 0 3	5,58	188,2	-28,2	-25,1	187,8	187,7	187,8	188,8	191,5	188,3	186,8	-25,4	-23,5
204	7,43	85.6	-4,0	-2,1	85,8	86,1	86,7	87,7	89,3	91,3	90,1	0,6	-0,9
0 0 4	7,84	99,3	-7,3	-8,8	101,9	102,3	102,1	102,1	103,8	103,7	107,4	-5,5	-8,1
603	8.80	149.0	6,4	4,4	155,3	156,4	159,4	162,4	164,8		173,8	2,1	-0,3
703	9,97	66.9	-0,5	-2,4	,			52,6	50,7	47,5	52,0	1,6	1,2
106	11.42	52.6	-6.6	-6.8	53.0	52,9	52,2	53,0	54,1	54,9	57,8	-5,8	-6,3
3 0 5	11.99	59.2	3.0	1.2	65.6	70.1	72,9	75.5	77.0	78,5	80,6	1,4	-0,3
307	13.06	32.6	0.5	-0.1	33.7	33.4	33.2	34,5	33,4	34,0	33,8	-0,5	-0,4
107	13.41	35.8	2,3	1.6	35.8	36.2	35,9	37.4	37,4	36,9	39,4	3,7	1,9
906	14.59	63.2	-0.1	-1.0	,	- ,	79,4	83.8	85,9	,	92,5	1,5	-2,2
903	16.11	155.1	-2.7	-3.0	161.7	162.7	164.0	165.0	165.3	166.0	168.1	-1.6	0.3
10 0 2	16.36	81.0	5.0	-1.6		92.6	98.3	101.9	105.7	107.0	113.3	-1.7	-0,7
12 0 5	17,19	49.1	-0.1	1.7	51,0	52,0	53,6	55,2	57,2		61,4	-1.9	0,1
12 0 1	18.38	34.0	0.0	-1.3	35.8	38.0	38.7	,	41.2	40,3	41,5	0,1	-1,1
12 0 2	19.33	32.0	-1.2	-1.2	35.3	36.6	38,6	38.0	39,5	39,5	42,4	-0.3	-0,3
14 0 2	19.71	41.3	-1.2	0.1	45.1	45.2	44.8	45.1	45.2	44.2	48.1	-1.1	0.7

Tableau 8. Facteurs de structure des réflexions très sensibles au changement de conformation

			293 K		243 K	226 K	202 K	182 K	163 K	140 K		123 K	
h01	<i>θ</i> (°)	, F _o	$F_{(lel)}$	$F_{(ob)}$			1 <i>I</i>	<i>,</i> ,			$ F_o $	F _(lel)	$F_{(ob)}$
303	6,07	38,2	-24,8	-12,3	45,2	46,3	48,8	52,2	54,4	56,5	56,2	-20,2	-9,7
504	8,80	72,0	-5,8	2,8			68,9	71,3	71,8	72,1	74,3	-10,7	1,7
305	9,37	92,1	13,0	2,8	89,6	90,8	92,3	90,6	88,7	89,3	91,7	12,8	2,8
4 05	9,66	28,3	-15,4	0,2			27.7			29,6	29,9	-14,2	1,0
604	9,67	68.3	7,5	-4,1			45,9	43,8		39,8	41,4	10,5	-4,2
505	10,16	65.3	15,8	-2,9	60,9	61,2	59.6	59.2	58.6	58,4	59.6	13,3	-4,9
206	13,06	29,6	-3,4	8,6	30,4	30,8	31.7	32.3	32,8	33,2	34,9	-3,0	6.2
807	14,96	82,3	5,9	-4.1	87.2	88.7	91.5	95.7	97,9	96,8	103.5	5,2	-5,9
207	15,04	38.8	5.3	-4.2	40.6	41,4	42,0	42,7	42,8	43,0	44,3	3.1	-2,6
708	15.85	39.2	7.7	-4,4	40,4	42,3		40.2	40,6	40,0	42,7	3,0	-4,9
4 09	16,89	21,2	3,3	-2,6	,	,		23,7	23,5	23,1	25,3	2,2	-1,8

Fig. 3. Variation de l'agitation thermique en fonction de la température et de l'angle de diffraction.

1

Tableau 9. Taux de conformation lel en fonction de la
température

x% (lel)										
140 ± 4 K	163 ± 4 K	182 ± 3 K	202 ± 2 K	226 ± 2 K	243±2					
				1	IX.					
111	99	75	58	56	54					
100	100	86,5	72	67	65					
98	97	91	73	55	53					
112	90	72	75	61	64					
103	90	90	55	57	57					
94	95	74	76	63	63					
95	99	85	65	63	63					
87	105	78	63	05	05					
88	100	80	72							
112		88	12							
110		00								
aleurs m	ovennes (%)								
101	96	82	68	60	60					

différentes et dans les mêmes conditions que précédemment. Pour des raisons de stabilité thermique, un délai d'une heure a été respecté, à chaque température, avant de déterminer les paramètres cristallins et de mesurer les intensités des réflexions sélectionnées. Celles-ci sont ensuite corrigées des facteurs de Lorentz et de polarisation (Tableaux 7 et 8).

Les facteurs de structure mesurés à la température Tsont rapportés à 123 K à l'aide des courbes $K_T = f(\theta)$ (Fig. 3). Le pourcentage de conformation *lel* est alors déterminé graphiquement pour chaque réflexion *hOl*. La moyenne effectuée sur l'ensemble de ces réflexions permet d'obtenir le taux définitif de conformation *lel* à chaque température T (Tableau 9) et de tracer la courbe x% = f(T) donnant l'évolution du désordre conformationnel (*lel-ob*) en fonction de la température (Fig. 4).

Celle-ci montre que le désordre (60% *lel*-40% *ob*) existe jusqu'à 215 K; entre 215 et 155 K le taux de conformation *ob* diminue linéairement de 0,7% par degré K et devient nul à 155 K. A partir de cette température, le désordre conformationnel disparaît donc complètement.

Cette étude montre que, comme dans le cas du complexe $(\pm)Cr(en)_3(SCN)_3.0,75H_2O$, le désordre (lel-ob) observé dans $(+)Cr(en)_3CI_3.2H_2O$ est un phénomène continu et réversible en fonction de la

température. Si la vitesse de disparition du désordre est du même ordre de grandeur pour les deux composés, il est cependant nécessaire de porter le cristal à une température beaucoup plus basse, pour que le désordre disparaisse dans le cas de $(+)Cr(en)_3Cl_3 \cdot 2H_2O$ (155 au lieu de 193 K).

Ceci justifie que l'agitation thermique du ligand anciennement désordonné reste plus grande, dans les mêmes conditions de température, pour $(+)Cr(en)_3$ - $Cl_3.2H_2O$ que pour $(\pm)Cr(en)_3(SCN)_3.0,75H_2O$.

Nous remercions M B. Bachet pour sa contribution efficace apportée au cours des manipulations et mesures diffractométriques effectuées à basse température.

Références

- BROUTY, C., SPINAT, P., WHULER, A. & HERPIN, P. (1977). Acta Cryst. B33, 1913–1920, 1920–1926.
- IUPAC (1970). Inorg. Chem. 9, 1–5.
- RAYMOND, K. N., CORFIELD, P. W. R. & IBERS, J. A. (1968). Inorg. Chem. 7, 1362–1373.
- WHULER, A., BROUTY, C., SPINAT, P. & HERPIN, P. (1977). Acta Cryst. B33, 2877–2885.